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Bottlenecks:
→ high cost when high level of error

→ high expansion factor
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H.Eval(S.Dec) as efficient as possibleH.Eval(S.Dec)

Optimize S.Dec circuit: Minimize homomorphic error growth

In practice for time and space constraints:

• ≈ 1000 homomorphic additions/multiplications

• total multiplicative depth < 10

Block ciphers:
AES[GHS12,CLT14], SIMON[LN14], PRINCE[DSES14], LowMC[ARS+15]

→ too many rounds
Stream ciphers:
Trivium, Kreyvium[CCF+15]

→ increasing complexity
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Filter Permutator

Joint work with:

Anthony Journault, François-Xavier Standaert and Claude Carlet,

presented at Eurocrypt 2016,

title:

Towards Stream Ciphers for Efficient FHE with Low-Noise
Ciphertexts.

ePrint: 254 (2016).
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Filter Permutator: Homomorphic Evaluation

. Key Register K

Pi1

Function F

F (Pi1 (K ))

mi

ci

PRNG

Perm.
Gen.

3rd generation FHE:

asymetric error growth for products

→ additions
→ multiplicative chains low noise ct

→ few monomials
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Filter Permutator: Security

Cryptanalysis Angle:

"good" PRNG + "good" Shuffle ≈ random Permutations,
→ all security rely on F :

Attacks on Filtering Function
I Algebraic
I Fast Algebraic
I Correlation
I High Order Correlation
I etc

Standard Criteria
I Algebraic Immunity
I Fast Algebraic Immunity
I Resiliency
I Non Linearity
I bla

Low cost constraints on F:

I controled number of additions
I multiplicative chains of simple functions
I few monomials
I small degree
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(Fast) Algebraic Attack

Algebraic Attack [CM03]
Let F be the keystream function of a stream cipher

1. find g a low algebraic degree function s.t. gF has low degree,
2. create T equations with monomials of degree ≤ deg(g),

3. linearize the system of T equations in D =
∑deg(g)

i=0

(N
i

)
variables,

4. solve the system in O(Dω).

Algebraic Immunity
Let F : FN

2 → F2,
we define:

AI(F ) = min{max(deg(g),deg(gF ),g 6= 0) }
= min{deg(g),g 6= 0 | gF = 0 or g(F + 1) = 0}

Attack complexity depends on deg(g) ≥ AI(F ).
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2. create T equations with monomials of degree ≤ deg(g),

3. linearize the system of T equations in D =
∑deg(g)

i=0

(N
i

)
variables,

4. solve the system in O(Dω).

Fast Algebraic Attack [C03]
Let F be the keystream function of a stream cipher

I find g and h low algebraic degree functions s.t. gF = h with deg(g) < AI(F )
and possibly deg(h) > deg(g),

I use codes methods to cancel monomials of degree higher than deg(g),
I solve the system with better complexity than Algebraic Attack.

We define FAI(F ) = min{2AI(F ),min1≤deg(g)≤AI(F ){deg(g) + deg(Fg),3deg(g)}}.
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Good Algebraic Immunity

Property: AI(F ) ≤ dN/2e.

Majority function

x = (x1, · · · , xN ) ∈ FN
2 , MajN (x) =

{
0 if Hw(x) < N

2 ,
1 otherwise.

Remark:
AI(MajN ) = dN/2e but ANF ≥

( N
dN/2e

)
monomials.

Direct Sum
f1 in ` variables x1, · · · , x` and f2, N − ` variables x`+1, · · · , xN ; direct sum F:

F (x1, · · · , xN ) = f1(x1, · · · , x`) + f2(x`+1, · · · , xN ).

Proposition:
max(AI(f1),AI(f2)) ≤ AI(F ) ≤ AI(f1) + AI(f2).
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Low Cost and Good Algebraic Immunity

Direct Sum
f1 in ` variables x1, · · · , x` and f2, N − ` variables x`+1, · · · , xN ; direct sum F:

F (x1, · · · , xN ) = f1(x1, · · · , x`) + f2(x`+1, · · · , xN ).

Proposition:
max(AI(f1),AI(f2)) ≤ AI(F ) ≤ AI(f1) + AI(f2).

Triangular function

Let Tk be a Boolean function of N = k (k+1)
2 variables, built as the direct sum of k

monomials of degree from 1 to k .
Example: T4 = x1 + x2x3 + x4x5x6 + x7x8x9x10.

Proposition: AI(Tk ) = k
Remark: Minimal number of monomials reachable.
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Triangular function

Let Tk be a Boolean function of N = k (k+1)
2 variables, built as the direct sum of k

monomials of degree from 1 to k .

Proposition: AI(Tk ) = k

Direct sum vector
Let F be a Boolean function obtained by direct sum of monomials (i.e. each
variable appears once and only once in the ANF), we define the direct sum
vector of F as:

mF = [m1,m2, · · · ,mk ],

where mi is the number of monomials of degree i .

Theorem:
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1≤d≤k
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Correlation-like Attacks

Correlation Attack/ BKW-like Attack
Let F be the keystream function of a stream cipher:

1. find g the best linear approximation of F ,
2. create the linear system replacing F by g,
3. solve the LPN instance with Bernoulli mean the error made by the

approximation.

Possible improvements: use of codes techniques or higher order
approximation.

Nonlinearity
Let F : FN

2 → F2, we define

NL(F ) = min
g affine

{dH (f ,g)},

where dH (f ,g) = #{x ∈ FN
2 | F (x) 6= g(x)} is the Hamming distance.

The approximation error is NL(F )
2N .
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Correlation-like Attacks

Nonlinearity
Let F : FN

2 → F2, we define

NL(F ) = min
g affine

{dH (f ,g)},

where dH (f ,g) = #{x ∈ FN
2 | F (x) 6= g(x)} is the Hamming distance.

The approximation error is NL(F )
2N .

Balancedness
F : FN

2 → F2 is balanced if its output are uniformly distributed over {0,1}.

Resiliency
F : FN

2 → F2 is m resilient if any of its restrictions obtained by fixing at most m
of its coordinates is balanced.
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Low Cost and good criteria

Property:
Let F be the direct sum of f1 in n1 variables and f2 in n2 variables:

I res(f ) = res(f1) + res(f2) + 1,
I NL(F ) = 2n2NL(f1) + 2n1NL(f2)− 2NL(f1)NL(f2).

Low cost functions
I Resiliency:

Ln =
∑n

i=1 xi ; n − 1 resilient
I Nonlinearity:

Q n
2

=
∑ n

2
i=1 x2i−1x2i

I Algebraic Immunity:
Tk =

∑k
i=1
∏i

j=1 x i(i−1)
2 +j

I Low cost and optimized criteria:
F = Ln1 + Q n2

2
+
∑

Tk
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Guess and Determine Attacks

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20

π−1

F

z0

z0 =
+

+

xπ(1) + xπ(2) + xπ(3) + xπ(4)

xπ(5)xπ(6) + xπ(7)xπ(8) + xπ(9)xπ(10)

xπ(11) + xπ(12)xπ(13) + xπ(14)xπ(15)xπ(16) + xπ(17)xπ(18)xπ(19)xπ(20)

Guess & Determine attack [Duval,Lallemand,Rotella16]
I Guess ` positions being 0,

I focus on permutations cancelling the monomials of degree > 2,
I collect all degree 2 equations,
I linearise and try to solve the system,
I time complexity 2`(1 + N +

(N
2

)
)ω, data complexity 1/Pr (P).
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xπ(1) + xπ(2) + xπ(3) + xπ(4)

xπ(5)xπ(6) + xπ(7)xπ(8) + xπ(9)xπ(10)

xπ(11) + xπ(12)xπ(13) + xπ(14)xπ(15)xπ(16) + xπ(17)xπ(18)xπ(19)xπ(20)

Guess & Determine attack [Duval,Lallemand,Rotella16]
I Guess ` positions being 0,
I focus on permutations cancelling the monomials of degree > 2,
I collect all degree 2 equations,
I linearise and try to solve the system,
I time complexity 2`(1 + N +

(N
2

)
)ω, data complexity 1/Pr (P).
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G&D attacks and new Boolean criteria
Attack lessons:

I zero cost homomorphic update→ unchanged key bits,
I ` guesses→ F restricted to F ′ on N − ` variables,
I attack on F ′ degree [DLR16],

I AI(F ′)→ G&D + (fast) algebraic attacks?
I NL(F ′), res(F ′)→ G&D + correlation attacks?

Attack depends on: criteria of F ′ and probabilities of getting F ′.

Recurrent criteria
For each Boolean criterion, we define its recurrent criterion denoted by [`] as
the minimal value of this criterion taken over all functions obtained by fixing ` of
the N variables of F .

I Recurrent AI: AI[`](F ),
I FAI[`](F ),
I res[`](F ),
I NL[`](F ).
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Recurrent Algebraic immunity

Recurrent AI; AI[`](F )
We define AI[`](F ) as the minimal algebraic immunity over all functions
obtained by fixing ` of the N variables of F .
Example:
AI[1](F (x1, x2)) = min[AI(F (0, x2)),AI(F (1, x2)),AI(F (x1,0)),AI(F (x1,1))]

Proposition: For all Boolean function F and ` such that 0 ≤ ` < N:

AI(F )− ` ≤ AI[`](F ) ≤ AI(F ).

Remark: Both bounds are tight.

Proposition:
For all strictly positive N and ` such that 0 ≤ ` < N:

AI[`](MajN ) = max
(

0,
⌈

N
2

⌉
− `
)
.
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Recurrent Criteria and Direct Sums of Monomials

Criteria for Direct Sums of Monomials
Let F be a direct sum of monomials with associated vector [m1, · · · ,mk ], we
define two recurent criteria:

I m∗F : the number of nonzero values of mF ,
I δmF = 1

2 −
NL(F )

2N ; the bias to one half.

Remark: If F is a direct sum of monomials, so is F [`].

Proposition: For all direct sum of monomials F :

I m∗F [`] ≥ m∗F −
⌊

`
min1≤i≤k mi

⌋
,

I δmF [`] ≤ δmF 2`.

Exact expression of m∗F [`] and δmF [`] using mF (see [MJSC16]):

m∗F [`] ↔ upper bound on AI[`](F ),
δmF [`] ↔ exact value of NL[`](F ).
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Summary

Introduction

Filter Permutator [MJSC16]

Standard Cryptanalysis and Low Cost Criteria

Guess and Determine and Recurrent Criteria

Fixed Hamming Weight and Restricted Input Criteria [CMR17]
Restricted input, and algebraic immunity
Restricted input, and non-linearity
Constant weight, and balancedness

Conclusion and open problems
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Fixed Hamming Weight and Restricted Input Criteria

Joint work with:

Claude Carlet and Yann Rotella,

title:

Boolean functions with restricted input and their
robustness; application to the FLIP cipher.

ePrint: 97 (2017).
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Filter Permutator: Hamming weight of F input

. Key Register K

Pi1

Function F

F (Pi1 (K ))

mi

ci

PRNG

Perm.
Gen.

ψK : i 7→ Pi (K )

Im(ψ) ( FN
2
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F should be studied on

EN,k := {x | wH(x) = k}

→ algebraic immunity
→ non-linearity
→ balancedness
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Restricted algebraic immunity

Algebraic immunity over E
Let f be defined over a set E :

AIE (f ) = min{max(deg(g),deg(gf ),g 6= 0 over E) }
= min{deg(g),g 6= 0 over E | gf = 0 or g(f + 1) = 0}

Let E ⊆ FN
2 , d ∈ N, we define the matrix Md,E :

|E |

∑d
i=0

(
N
i

)
u ∈ FN

2

wH(u) ≤ d

x ∈ E

xu :=
∏N

i=1 xui
i
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Restricted algebraic immunity
Let E ⊆ FN

2 , d ∈ N, we define the matrix Md,E :

|E |

∑d
i=0

(
N
i

)
u ∈ FN

2

wH(u) ≤ d

x ∈ E

xu :=
∏N

i=1 xui
i

Proposition: Let f be defined over E , e ∈ N:
If rank(Md,E ) + rank(Me,E ) > |E |, then there exists g 6= 0 on E , and h such that:

deg(g) ≤ e,deg(h) ≤ d , and, gf = h on E .

Corollary:

AIE (f ) ≤ min
{

d ; rank(Md,E ) >
|E |
2

}
.
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Algebraic immunity over EN,k

In particular, consider the set EN,k := {x | wH(x) = k},

Theorem:

rank(Md,EN,k ) =
(

N
min(d , k ,N − k )

)
.

Corollary: For all 0 ≤ k ≤ N/2:

AIEN,k (f ) ≤ min
{

d ; 2
(

N
d

)
>

(
N
k

)}
.

Remark: It proves that best AIEN,k is lower than in the general case.

Theorem:
Let F be the direct sum of f and g of n and m variables; if n ≤ k ≤ m then:

AIEN,k (F ) ≥ AI(f )− deg(g).
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Restricted non-linearity

Non-linearity over E
Let E ⊆ Fn

2 and f be any Boolean function defined over E , we define:
NLE (f ) = ming{dH (f ,g) over E}, where g is an affine function over FN

2 .

NLE (f ) =
|E |
2
− 1

2
max
a∈FN

2

(∣∣∣∣∣∑
x∈E

(−1)f (x)+a·x

∣∣∣∣∣
)
.

Looking for an upper bound, using the covering radius bound:
Proposition:
For every subset E of FN

2 and every Boolean function f defined over E , we
have:

NLE (f ) ≤ |E |
2
−
√
|E |
2

.
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Restricted non-linearity

Looking for an upper bound, using the covering radius bound:
Proposition:
For every subset E of FN

2 and every Boolean function f defined over E , we
have:

NLE (f ) ≤ |E |
2
−
√
|E |
2

.

Proposition: Let F be a vector space, assuming that:

∃v ∈ FN
2 such that v · (x + y ) = 1 for all (x , y ) ∈ E2 such that 0 6= x + y ∈ F⊥,

we have:

NLE (f ) ≤ |E |
2
−
√
|E + λ|

2
,

where
λ = |

∑
(x,y )∈E2

06=x+y∈F⊥

(−1)f (x)+f (y )|.
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2 such that v · (x + y ) = 1 for all (x , y ) ∈ E2 such that 0 6= x + y ∈ F⊥,

we have:

NLE (f ) ≤ |E |
2
−
√
|E + λ|

2
,

where
λ = |

∑
(x,y )∈E2

06=x+y∈F⊥

(−1)f (x)+f (y )|.

Focusing on N − 1 dimentional vector spaces,
Corollary:

λ = max
a∈FN

2 ;a 6=0
|
∑

(x,y )∈E2
x+y=a

(−1)f (x)+f (y )| = max
a∈FN

2 ;a 6=0
|

∑
x∈E∩(a+E)

(−1)Daf (x)|.
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Non-linearity over EN,k

In particular, considering the set EN,k ,

Proposition: For (N, k ) 6= (50,3) nor (50,47) the bound:

NLEN,k (f ) ≤
(n

k

)
2
− 1

2

√(
n
k

)
,

cannot be tight.

This bound has been improved in [Mesnager17] using power sum of Walsh
transform.

Remark: max(NLEN,k ) ≥ d/2,
where d is the minimal distance of a punctured 1st order Reed Müller code,
which value has been proved in [Dumer,Kapralova13].

Standard non-linearity can collapse:
Proposition:
For every even N ≥ 4, the quadratic bent functions satisfying NLEN,k (f ) = 0 for
every k are those functions of the form f (x) = σ1(x)`(x) + σ2(x) where
`(1, . . . ,1) = 0.
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Balancedness on constant Hamming weight input

Balancedness over E
f : E → F2 is balanced over E if its output are uniformly distributed over {0,1}.

We could be interested by the behaviour on a family of sets:

Weightwise Perfectly Balanced Function
Boolean function f defined over FN

2 , is weightwise perfectly balanced (WPB):

∀k ∈ [1,N − 1],wH(f )k =

(N
k

)
2
, and, f (0, . . . ,0) = 0; f (1, . . . ,1) = 1.

Theorem:
Let g′ be an arbitrary N-variable function, if f , f ′, and g, are 3 N-variable WPB
functions then,

h(x , y ) = f (x) +
N∏

i=1

xi + g(y ) + (f (x) + f ′(x))g′(y ),

is a 2N-variable WPB function.
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Balancedness on constant Hamming weight input

Weightwise Almost Perfectly Balanced Function
f defined over FN

2 , is weightwise almost perfectly balanced (WAPB):

∀k ∈ [1,N − 1],wH(f )k =

(N
k

)
2

or

(N
k

)
± 1

2
, and, f (0, . . . ,0) = 0; f (1, . . . ,1) = 1.

Proposition: The function fN in N ≥ 2 variables defined as:

fN =


x1 if N = 2,

fN−1 if N odd,
fN−1 + xN−2 +

∏2d−1

i=1 xN−i if N = 2d ; d > 1,
fN−1 + xN−2 +

∏2d

i=1 xn−i if N = p · 2d ,p > 1 odd,d ≥ 1.

has the following properties for all N ≥ 2:

I fN is WAPB,
I deg(fN ) = 2d−1; where 2d ≤ N < 2d+1,
I fN ’s ANF contains N − 1− (N mod 2) monomials.
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Conclusion and Open Problems

Filter Permutator optimal for FHE,
bringing new constraints on filtering function:

� higher number of variables with simpler circuit,
� resistant even when some inputs are known,

� robust on particular sets of inputs.

Still open questions ?
� Low cost functions without direct sums?
� Simplest function providing security?
� Concrete values of recurrent criteria for all functions?
� Functions maximizing NLEN,k ; AIEN,k ?
� Fixed Hamming weight input and cryptanalysis?
� · · · ?

Thanks for your attention!
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