Symmetric Encryption Scheme adapted to Fully Homomorphic Encryption Scheme: New Criteria for Boolean functions

Pierrick MÉAUX

École normale supérieure, INRIA, CNRS, PSL

Boolean Functions and their Applications (BFA) — Os, Norway Tuesday July 4

Table of Contents

Introduction

Motivation Combining SE and FHE

Filter Permutator [MJSC16]

Standard Cryptanalysis and Low Cost Criteria

Algebraic attacks Correlation attacks (and others)

Guess and Determine and Recurrent Criteria

G&D attacks and lessons Recurrent criteria

Fixed Hamming Weight and Restricted Input Criteria [CMR17]

Restricted input, and algebraic immunity Restricted input, and non-linearity Constant weight, and balancedness

Conclusion and open problems

Introduction Motivation Combining SE and FHE

Filter Permutator [MJSC16]

Standard Cryptanalysis and Low Cost Criteria

Guess and Determine and Recurrent Criteria

Fixed Hamming Weight and Restricted Input Criteria [CMR17]

Conclusion and open problems

Alice

Limited storage Limited power

> Store ? Compute ?

Alice

Limited storage Limited power

> Store √ Compute √

Claude

Huge storage Huge power

Alice

Limited storage Limited power

> Store √ Compute √

Privacy ?

Claude

Huge storage Huge power

Claude

Huge storage Huge power

Fully Homomorphic Encryption

$$f, \mathbf{C}(x_1), \cdots, \mathbf{C}(x_n) \rightarrow \mathbf{C}(f(x_1, \cdots, x_n))$$

Fully Homomorphic Encryption

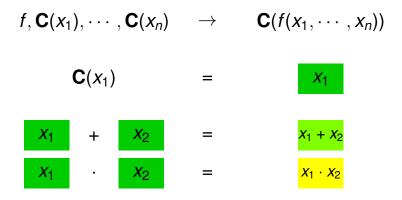
 $x_1 \cdot x_2$

$$f, \mathbf{C}(x_1), \cdots, \mathbf{C}(x_n) \rightarrow \mathbf{C}(f(x_1, \cdots, x_n))$$
$$\mathbf{C}(x_1) = x_1$$
$$x_1 + x_2 = x_1 + x_2$$

=

 $X_1 \cdot X_2$

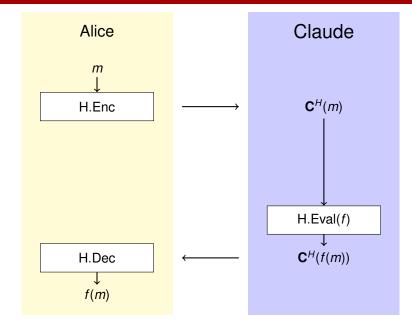
Fully Homomorphic Encryption

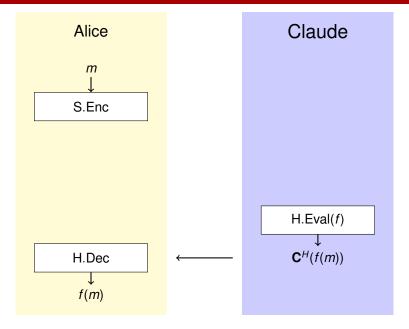


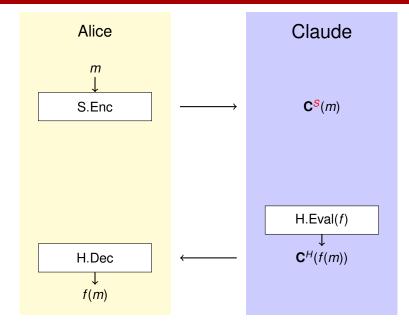
Bottlenecks:

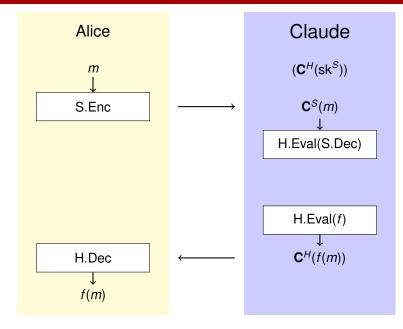
 \rightarrow high cost when high level of error \rightarrow high expansion factor

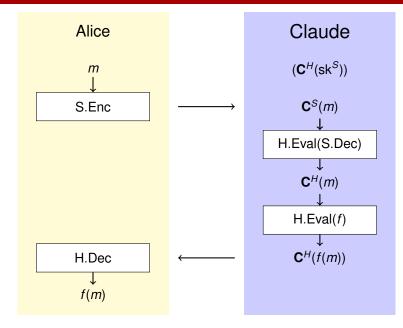
FHE Framework



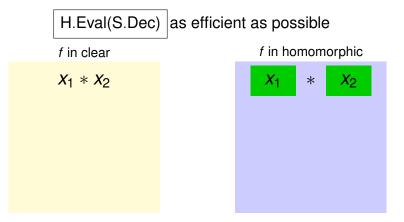


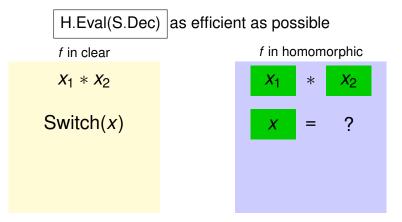


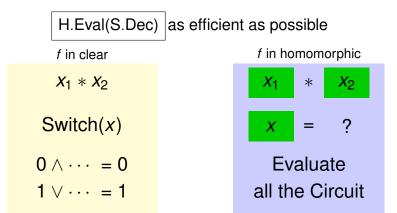


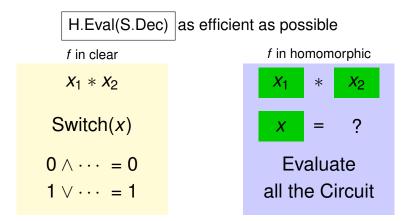


H.Eval(S.Dec) as efficient as possible









Optimize S.Dec circuit: Minimize homomorphic error growth

H.Eval(S.Dec) as efficient as possible

Optimize S.Dec circuit: Minimize homomorphic error growth

In practice for time and space constraints:

- $\bullet \approx$ 1000 homomorphic additions/multiplications
- total multiplicative depth < 10

H.Eval(S.Dec) as efficient as possible

Optimize S.Dec circuit: Minimize homomorphic error growth

In practice for time and space constraints:

- $\bullet \approx$ 1000 homomorphic additions/multiplications
- total multiplicative depth < 10

Block ciphers:

AES[GHS12,CLT14], SIMON[LN14], PRINCE[DSES14], LowMC[ARS+15] \rightarrow too many rounds

Stream ciphers:

Trivium, Kreyvium[CCF+15]

 \rightarrow increasing complexity

Introduction

Filter Permutator [MJSC16]

Standard Cryptanalysis and Low Cost Criteria

Guess and Determine and Recurrent Criteria

Fixed Hamming Weight and Restricted Input Criteria [CMR17]

Conclusion and open problems

Joint work with:

Anthony Journault, François-Xavier Standaert and Claude Carlet,

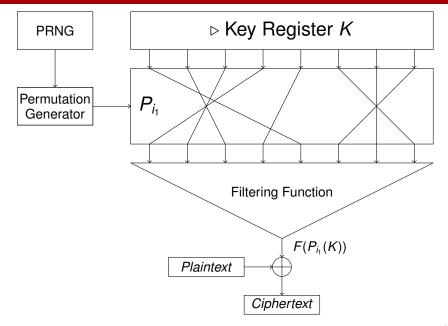
presented at Eurocrypt 2016,

title:

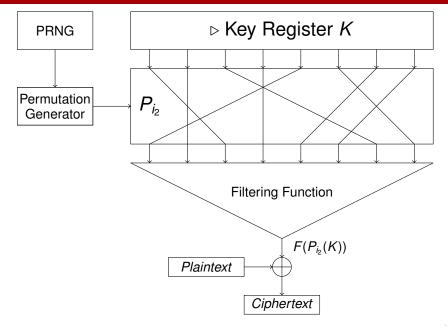
Towards Stream Ciphers for Efficient FHE with Low-Noise Ciphertexts.

ePrint: 254 (2016).

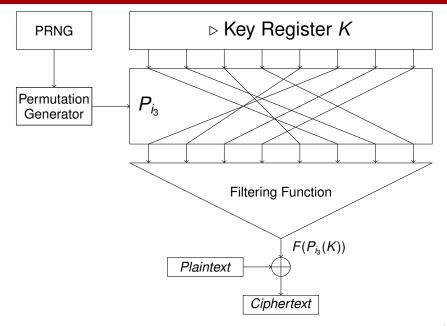
Filter Permutator: Construction

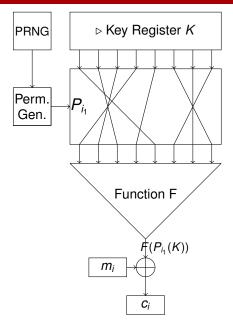


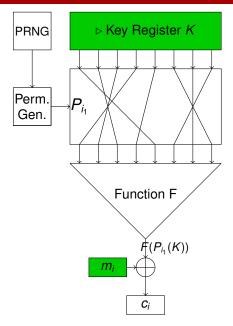
Filter Permutator: Construction



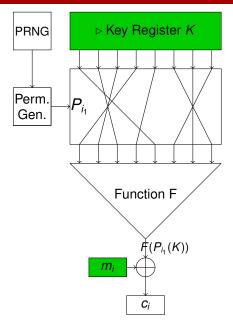
Filter Permutator: Construction





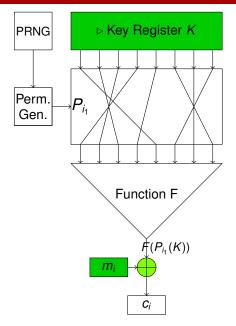


K_i, m_i: fresh



K_i, m_i: fresh

Permutation: no noise



K_i, m_i: fresh

Permutation: no noise

XOR: small noise

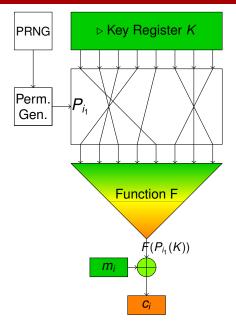


K_i, m_i: fresh

Permutation: no noise

XOR: small noise

F: determines ct noise

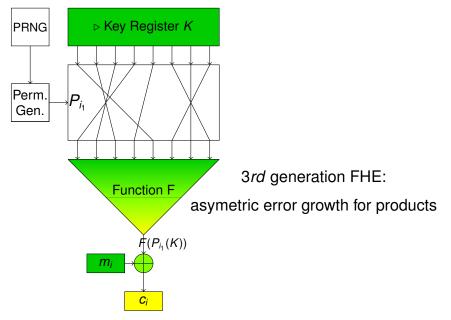


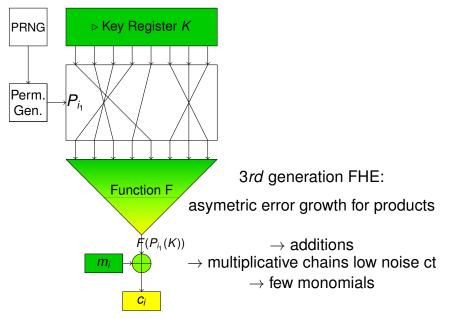
K_i, m_i: fresh

Permutation: no noise

XOR: small noise

F: determines ct noise





Filter Permutator: Security

Cryptanalysis Angle:

"good" PRNG + "good" Shuffle \approx random Permutations, \rightarrow all security rely on *F*:

Cryptanalysis Angle:

"good" PRNG + "good" Shuffle \approx random Permutations, \rightarrow all security rely on *F*:

Attacks on Filtering Function

- Algebraic
- Fast Algebraic
- Correlation
- High Order Correlation
- etc

Cryptanalysis Angle:

"good" PRNG + "good" Shuffle \approx random Permutations, \rightarrow all security rely on *F*:

Attacks on Filtering Function	Standard Criteria
 Algebraic 	 Algebraic Immunity
 Fast Algebraic 	 Fast Algebraic Immunity
 Correlation 	 Resiliency
 High Order Correlation 	 Non Linearity
► etc	

Cryptanalysis Angle:

"good" PRNG + "good" Shuffle \approx random Permutations, \rightarrow all security rely on *F*:

Attacks on Filtering Function	Standard Criteria
 Algebraic 	 Algebraic Immunity
 Fast Algebraic 	 Fast Algebraic Immunity
 Correlation 	 Resiliency
 High Order Correlation 	 Non Linearity
► etc	

Low cost constraints on F:

- controled number of additions
- multiplicative chains of simple functions
- few monomials
- small degree

Introduction

Filter Permutator [MJSC16]

Standard Cryptanalysis and Low Cost Criteria Algebraic attacks Correlation attacks (and others)

Guess and Determine and Recurrent Criteria

Fixed Hamming Weight and Restricted Input Criteria [CMR17]

Conclusion and open problems

Let F be the keystream function of a stream cipher

- 1. find g a low algebraic degree function s.t. gF has low degree,
- 2. create T equations with monomials of degree $\leq deg(g)$,
- 3. linearize the system of T equations in $D = \sum_{i=0}^{deg(g)} {N \choose i}$ variables,
- 4. solve the system in $\mathcal{O}(D^{\omega})$.

Let F be the keystream function of a stream cipher

- 1. find g a low algebraic degree function s.t. gF has low degree,
- 2. create T equations with monomials of degree $\leq deg(g)$,
- 3. linearize the system of T equations in $D = \sum_{i=0}^{deg(g)} {N \choose i}$ variables,
- 4. solve the system in $\mathcal{O}(D^{\omega})$.

Algebraic Immunity

Let $F : \mathbb{F}_2^N \to \mathbb{F}_2$, we define:

$$\begin{aligned} \mathsf{AI}(F) &= \min\{\max(\deg(g), \deg(gF), g \neq 0)\} \\ &= \min\{\deg(g), g \neq 0 \mid gF = 0 \text{ or } g(F+1) = 0 \end{aligned}$$

Attack complexity depends on $deg(g) \ge AI(F)$.

Let F be the keystream function of a stream cipher

- 1. find g a low algebraic degree function s.t. gF has low degree,
- 2. create T equations with monomials of degree $\leq deg(g)$,
- 3. linearize the system of T equations in $D = \sum_{i=0}^{deg(g)} {N \choose i}$ variables,
- 4. solve the system in $\mathcal{O}(D^{\omega})$.

Fast Algebraic Attack [C03]

Let F be the keystream function of a stream cipher

- ▶ find g and h low algebraic degree functions s.t. gF = h with deg(g) < AI(F) and possibly deg(h) > deg(g),
- ▶ use codes methods to cancel monomials of degree higher than deg(g),
- solve the system with better complexity than Algebraic Attack.

Let F be the keystream function of a stream cipher

- 1. find g a low algebraic degree function s.t. gF has low degree,
- 2. create T equations with monomials of degree $\leq deg(g)$,
- 3. linearize the system of T equations in $D = \sum_{i=0}^{deg(g)} {N \choose i}$ variables,
- 4. solve the system in $\mathcal{O}(D^{\omega})$.

Fast Algebraic Attack [C03]

Let F be the keystream function of a stream cipher

- ▶ find g and h low algebraic degree functions s.t. gF = h with deg(g) < Al(F) and possibly deg(h) > deg(g),
- ▶ use codes methods to cancel monomials of degree higher than deg(g),
- solve the system with better complexity than Algebraic Attack.

We define $FAI(F) = min\{2AI(F), min_{1 \le deg(g) \le AI(F)} \{ deg(g) + deg(Fg), 3deg(g) \} \}.$

Good Algebraic Immunity

Property: $AI(F) \leq \lceil N/2 \rceil$.

Majority function

$$x = (x_1, \cdots, x_N) \in \mathbb{F}_2^N$$
, $Maj_N(x) = \begin{cases} 0 & \text{if } Hw(x) < \frac{N}{2}, \\ 1 & \text{otherwise.} \end{cases}$

Remark:

 $\mathsf{AI}(\textit{Maj}_N) = \lceil N/2 \rceil \quad \text{but} \quad \mathsf{ANF} \geq \binom{N}{\lceil N/2 \rceil} \text{ monomials}.$

Good Algebraic Immunity

Property: $AI(F) \leq \lceil N/2 \rceil$.

Majority function

$$x = (x_1, \cdots, x_N) \in \mathbb{F}_2^N$$
, $Maj_N(x) = \begin{cases} 0 & \text{if } Hw(x) < \frac{N}{2}, \\ 1 & \text{otherwise.} \end{cases}$

Remark:

$$AI(Maj_N) = \lceil N/2 \rceil$$
 but $ANF \ge \binom{N}{\lceil N/2 \rceil}$ monomials.

Direct Sum

 f_1 in ℓ variables x_1, \dots, x_ℓ and $f_2, N - \ell$ variables $x_{\ell+1}, \dots, x_N$; direct sum F:

$$F(x_1, \cdots, x_N) = f_1(x_1, \cdots, x_{\ell}) + f_2(x_{\ell+1}, \cdots, x_N).$$

Proposition:

 $\max(\mathsf{AI}(f_1),\mathsf{AI}(f_2)) \leq \mathsf{AI}(F) \leq \mathsf{AI}(f_1) + \mathsf{AI}(f_2).$

Low Cost and Good Algebraic Immunity

Direct Sum

 f_1 in ℓ variables x_1, \dots, x_ℓ and $f_2, N - \ell$ variables $x_{\ell+1}, \dots, x_N$; direct sum F:

$$F(x_1, \cdots, x_N) = f_1(x_1, \cdots, x_\ell) + f_2(x_{\ell+1}, \cdots, x_N).$$

Proposition:

$$\max(\mathsf{AI}(f_1), \mathsf{AI}(f_2)) \leq \mathsf{AI}(F) \leq \mathsf{AI}(f_1) + \mathsf{AI}(f_2).$$

Triangular function

Let T_k be a Boolean function of $N = \frac{k(k+1)}{2}$ variables, built as the direct sum of k monomials of degree from 1 to k. Example: $T_4 = x_1 + x_2x_3 + x_4x_5x_6 + x_7x_8x_9x_{10}$.

Proposition: $AI(T_k) = k$ **Remark:** Minimal number of monomials reachable.

Low Cost and Good Algebraic Immunity

Triangular function

Let T_k be a Boolean function of $N = \frac{k(k+1)}{2}$ variables, built as the direct sum of k monomials of degree from 1 to k.

Proposition: $AI(T_k) = k$

Direct sum vector

Let *F* be a Boolean function obtained by direct sum of monomials (*i.e.* each variable appears once and only once in the ANF), we define the direct sum vector of *F* as:

$$\mathbf{m}_F = [m_1, m_2, \cdots, m_k],$$

where m_i is the number of monomials of degree *i*.

Low Cost and Good Algebraic Immunity

Triangular function

Let T_k be a Boolean function of $N = \frac{k(k+1)}{2}$ variables, built as the direct sum of k monomials of degree from 1 to k.

Proposition: $AI(T_k) = k$

Direct sum vector

Let *F* be a Boolean function obtained by direct sum of monomials (*i.e.* each variable appears once and only once in the ANF), we define the direct sum vector of *F* as:

$$\mathbf{m}_F = [m_1, m_2, \cdots, m_k],$$

where m_i is the number of monomials of degree *i*.

Theorem:

$$\mathsf{AI}(F) = \min_{1 \le d \le k} \left(d + \sum_{i > d} m_i \right).$$

Correlation Attack/ BKW-like Attack

Let F be the keystream function of a stream cipher:

- 1. find g the best linear approximation of F,
- 2. create the linear system replacing F by g,
- 3. solve the LPN instance with Bernoulli mean the error made by the approximation.

Correlation Attack/ BKW-like Attack

Let F be the keystream function of a stream cipher:

- 1. find g the best linear approximation of F,
- 2. create the linear system replacing F by g,
- 3. solve the LPN instance with Bernoulli mean the error made by the approximation.

Possible improvements: use of codes techniques or higher order approximation.

Correlation Attack/ BKW-like Attack

Let F be the keystream function of a stream cipher:

- 1. find g the best linear approximation of F,
- 2. create the linear system replacing F by g,
- 3. solve the LPN instance with Bernoulli mean the error made by the approximation.

Possible improvements: use of codes techniques or higher order approximation.

Nonlinearity

Let $F : \mathbb{F}_2^N \to \mathbb{F}_2$, we define

$$\mathsf{NL}(F) = \min_{g \text{ affine}} \{ d_H(f,g) \},\$$

where $d_H(f,g) = #\{x \in \mathbb{F}_2^N \mid F(x) \neq g(x)\}$ is the Hamming distance.

The approximation error is $\frac{NL(F)}{2^N}$.

Nonlinearity

Let $F : \mathbb{F}_2^N \to \mathbb{F}_2$, we define

$$\mathsf{NL}(F) = \min_{g \text{ affine}} \{ d_H(f,g) \},\$$

where $d_H(f,g) = #\{x \in \mathbb{F}_2^N \mid F(x) \neq g(x)\}$ is the Hamming distance.

The approximation error is $\frac{NL(F)}{2^N}$.

Balancedness

 $F : \mathbb{F}_2^N \to \mathbb{F}_2$ is balanced if its output are uniformly distributed over $\{0, 1\}$.

Resiliency

 $F : \mathbb{F}_2^N \to \mathbb{F}_2$ is *m* resilient if any of its restrictions obtained by fixing at most *m* of its coordinates is balanced.

Property:

Let F be the direct sum of f_1 in n_1 variables and f_2 in n_2 variables:

- ▶ $res(f) = res(f_1) + res(f_2) + 1$,
- ▶ $NL(F) = 2^{n_2}NL(f_1) + 2^{n_1}NL(f_2) 2NL(f_1)NL(f_2).$

Property:

Let F be the direct sum of f_1 in n_1 variables and f_2 in n_2 variables:

- $res(f) = res(f_1) + res(f_2) + 1$,
- ► $NL(F) = 2^{n_2}NL(f_1) + 2^{n_1}NL(f_2) 2NL(f_1)NL(f_2).$

Low cost functions

- Resiliency: $L_n = \sum_{i=1}^n x_i$; n - 1 resilient
- ► Nonlinearity:

$$Q_{\frac{n}{2}} = \sum_{i=1}^{\frac{n}{2}} x_{2i-1} x_{2i}$$

Algebraic Immunity:

$$T_k = \sum_{i=1}^k \prod_{j=1}^i x_{\frac{i(i-1)}{2}+j}$$

Property:

Let F be the direct sum of f_1 in n_1 variables and f_2 in n_2 variables:

- $res(f) = res(f_1) + res(f_2) + 1$,
- ► $NL(F) = 2^{n_2}NL(f_1) + 2^{n_1}NL(f_2) 2NL(f_1)NL(f_2).$

Low cost functions

- Resiliency: $L_n = \sum_{i=1}^n x_i$; n-1 resilient
- Nonlinearity:

$$Q_{\frac{n}{2}} = \sum_{i=1}^{\frac{n}{2}} x_{2i-1} x_{2i}$$

- Algebraic Immunity: $T_k = \sum_{i=1}^k \prod_{j=1}^i X_{\frac{i(i-1)}{2}+j}$
- Low cost and optimized criteria:

$$F = L_{n_1} + Q_{\frac{n_2}{2}} + \sum T_k$$

Introduction

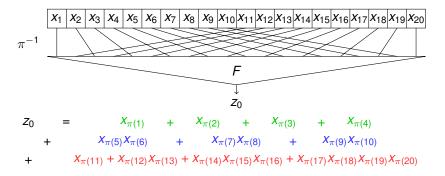
Filter Permutator [MJSC16]

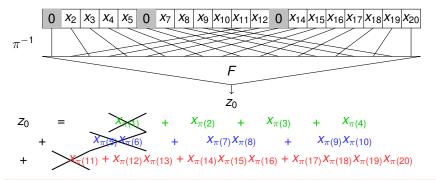
Standard Cryptanalysis and Low Cost Criteria

Guess and Determine and Recurrent Criteria G&D attacks and lessons Recurrent criteria

Fixed Hamming Weight and Restricted Input Criteria [CMR17]

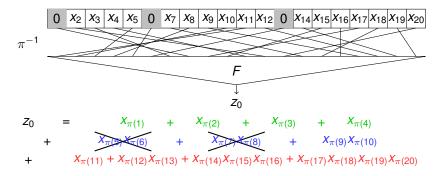
Conclusion and open problems





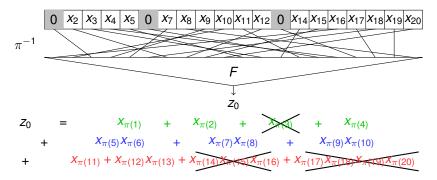
Guess & Determine attack [Duval,Lallemand,Rotella16]

► Guess ℓ positions being 0,



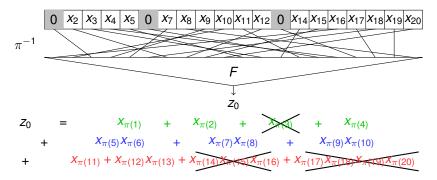
Guess & Determine attack [Duval,Lallemand,Rotella16]

- ► Guess ℓ positions being 0,
- focus on permutations cancelling the monomials of degree > 2,



Guess & Determine attack [Duval,Lallemand,Rotella16]

- ► Guess ℓ positions being 0,
- focus on permutations cancelling the monomials of degree > 2,
- collect all degree 2 equations,



Guess & Determine attack [Duval,Lallemand,Rotella16]

- Guess l positions being 0,
- focus on permutations cancelling the monomials of degree > 2,
- collect all degree 2 equations,
- linearise and try to solve the system,
- time complexity $2^{\ell}(1 + N + {N \choose 2})^{\omega}$, data complexity 1/Pr(P).

Attack lessons:

- zero cost homomorphic update \rightarrow unchanged key bits,
- ℓ guesses \rightarrow *F* restricted to *F*' on *N* ℓ variables,
- attack on F' degree [DLR16],

Attack lessons:

- zero cost homomorphic update \rightarrow unchanged key bits,
- ℓ guesses \rightarrow *F* restricted to *F*' on *N* ℓ variables,
- attack on F' degree [DLR16],
- $AI(F') \rightarrow G\&D + (fast)$ algebraic attacks?
- ► NL(F'), res(F') → G&D + correlation attacks?

Attack lessons:

- zero cost homomorphic update \rightarrow unchanged key bits,
- ℓ guesses \rightarrow *F* restricted to *F*' on *N* ℓ variables,
- attack on F' degree [DLR16],
- $AI(F') \rightarrow G\&D + (fast)$ algebraic attacks?
- ► NL(F'), res(F') → G&D + correlation attacks?

Attack depends on: criteria of F' and probabilities of getting F'.

Attack lessons:

- zero cost homomorphic update \rightarrow unchanged key bits,
- ℓ guesses \rightarrow *F* restricted to *F*' on *N* ℓ variables,
- attack on F' degree [DLR16],
- ► AI(F') → G&D + (fast) algebraic attacks?
- ► NL(F'), res(F') → G&D + correlation attacks?

Attack depends on: criteria of F' and probabilities of getting F'.

Recurrent criteria

For each Boolean criterion, we define its recurrent criterion denoted by $[\ell]$ as the minimal value of this criterion taken over all functions obtained by fixing ℓ of the *N* variables of *F*.

- ► Recurrent AI: AI[ℓ](F),
- ► FAI[ℓ](*F*),
- ▶ res[ℓ](F),
- ► NL[ℓ](*F*).

Recurrent AI; $AI[\ell](F)$

We define $AI[\ell](F)$ as the minimal algebraic immunity over all functions obtained by fixing ℓ of the *N* variables of *F*.

Example:

 $\mathsf{AI}[1](F(x_1, x_2)) = \min[\mathsf{AI}(F(0, x_2)), \mathsf{AI}(F(1, x_2)), \mathsf{AI}(F(x_1, 0)), \mathsf{AI}(F(x_1, 1))]$

Recurrent AI; AI[ℓ](F)

We define AI[ℓ](F) as the minimal algebraic immunity over all functions obtained by fixing ℓ of the N variables of F.

Proposition: For all Boolean function *F* and ℓ such that $0 \leq \ell < N$:

 $AI(F) - \ell \leq AI[\ell](F) \leq AI(F).$

Remark: Both bounds are tight.

Recurrent AI; AI[ℓ](F)

We define AI[ℓ](F) as the minimal algebraic immunity over all functions obtained by fixing ℓ of the N variables of F.

Proposition: For all Boolean function *F* and ℓ such that $0 \leq \ell < N$:

$$\operatorname{AI}(F) - \ell \leq \operatorname{AI}[\ell](F) \leq \operatorname{AI}(F).$$

Remark: Both bounds are tight.

Proposition:

For all strictly positive *N* and ℓ such that $0 \leq \ell < N$:

$$\mathsf{AI}[\ell](Maj_N) = \max\left(0, \left\lceil \frac{N}{2} \right\rceil - \ell\right).$$

Recurrent Criteria and Direct Sums of Monomials

Criteria for Direct Sums of Monomials

Let *F* be a direct sum of monomials with associated vector $[m_1, \dots, m_k]$, we define two recurrent criteria:

m^{*}_F: the number of nonzero values of m_F,

•
$$\delta_{\mathbf{m}_F} = \frac{1}{2} - \frac{\mathrm{NL}(F)}{2^N}$$
; the bias to one half.

Recurrent Criteria and Direct Sums of Monomials

Criteria for Direct Sums of Monomials

Let *F* be a direct sum of monomials with associated vector $[m_1, \dots, m_k]$, we define two recurrent criteria:

- ▶ m^{*}_F: the number of nonzero values of m_F,
- $\delta_{\mathbf{m}_F} = \frac{1}{2} \frac{NL(F)}{2^N}$; the bias to one half.

Remark: If F is a direct sum of monomials, so is $F[\ell]$.

Proposition: For all direct sum of monomials *F*:

▶
$$\mathbf{m}_{F[\ell]}^* \ge \mathbf{m}_F^* - \left\lfloor \frac{\ell}{\min_{1 \le i \le k} m_i} \right\rfloor$$
,

 $\triangleright \ \delta_{\mathbf{m}_{F[\ell]}} \leq \delta_{\mathbf{m}_F} \mathbf{2}^{\ell}.$

Recurrent Criteria and Direct Sums of Monomials

Criteria for Direct Sums of Monomials

Let *F* be a direct sum of monomials with associated vector $[m_1, \dots, m_k]$, we define two recurrent criteria:

- \mathbf{m}_{F}^{*} : the number of nonzero values of \mathbf{m}_{F} ,
- $\delta_{\mathbf{m}_F} = \frac{1}{2} \frac{NL(F)}{2^N}$; the bias to one half.

Remark: If F is a direct sum of monomials, so is $F[\ell]$.

Proposition: For all direct sum of monomials *F*:

$$\blacktriangleright \mathbf{m}_{F[\ell]}^* \geq \mathbf{m}_F^* - \left\lfloor \frac{\ell}{\min_{1 \leq i \leq k} m_i} \right\rfloor,$$

 $\triangleright \ \delta_{\mathbf{m}_{F[\ell]}} \leq \delta_{\mathbf{m}_F} \mathbf{2}^{\ell}.$

Exact expression of $\mathbf{m}_{F[\ell]}^*$ and $\delta_{\mathbf{m}_{F[\ell]}}$ using \mathbf{m}_F (see [MJSC16]):

$$\begin{array}{l} \textbf{m}^*_{F[\ell]} \leftrightarrow \text{upper bound on } \mathsf{AI}[\ell](F), \\ \delta_{\textbf{m}_{F[\ell]}} \leftrightarrow \text{ exact value of } \mathsf{NL}[\ell](F). \end{array}$$

Introduction

Filter Permutator [MJSC16]

Standard Cryptanalysis and Low Cost Criteria

Guess and Determine and Recurrent Criteria

Fixed Hamming Weight and Restricted Input Criteria [CMR17] Restricted input, and algebraic immunity Restricted input, and non-linearity Constant weight, and balancedness

Conclusion and open problems

Fixed Hamming Weight and Restricted Input Criteria

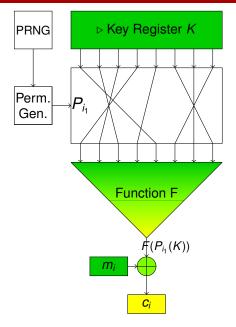
Joint work with:

Claude Carlet and Yann Rotella,

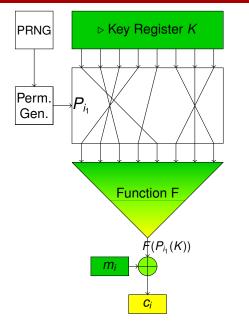
title:

Boolean functions with restricted input and their robustness; application to the FLIP cipher.

ePrint: 97 (2017).

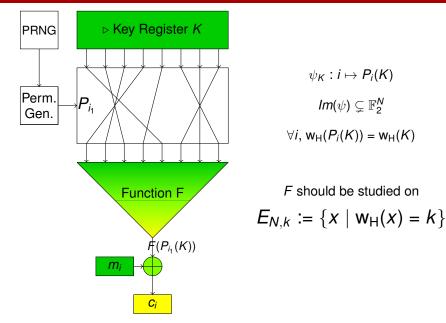


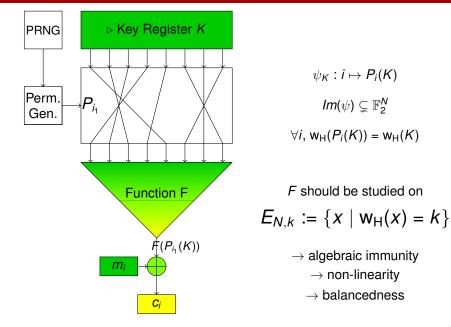
 $\psi_{K} : i \mapsto P_{i}(K)$ $Im(\psi) \subsetneq \mathbb{F}_{2}^{N}$



$$\psi_{K} : i \mapsto P_{i}(K)$$

 $Im(\psi) \subsetneq \mathbb{F}_{2}^{N}$
 $\forall i, w_{H}(P_{i}(K)) = w_{H}(K)$





Algebraic immunity over E

Let *f* be defined over a set *E*:

$$\mathsf{Al}_E(f) = \min\{\max(\deg(g), \deg(gf), g \neq 0 \text{ over } E)\}$$

 $= \min\{deg(g), g \neq 0 \text{ over } E \mid gf = 0 \text{ or } g(f+1) = 0\}$

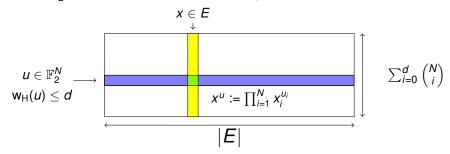
Algebraic immunity over E

Let f be defined over a set E:

$$AI_E(f) = \min\{\max(\deg(g), \deg(gf), g \neq 0 \text{ over } E)\}$$

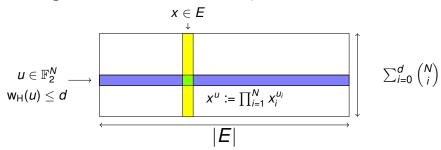
 $= \min\{deg(g), g \neq 0 \text{ over } E \mid gf = 0 \text{ or } g(f+1) = 0\}$

Let $E \subseteq \mathbb{F}_2^N$, $d \in \mathbb{N}$, we define the matrix $\mathbf{M}_{d,E}$:



Restricted algebraic immunity

Let $E \subseteq \mathbb{F}_2^N$, $d \in \mathbb{N}$, we define the matrix $\mathbf{M}_{d,E}$:



Proposition: Let *f* be defined over $E, e \in \mathbb{N}$:

If rank($M_{d,E}$) + rank($M_{e,E}$) > |E|, then there exists $g \neq 0$ on E, and h such that:

$$\deg(g) \leq e, \deg(h) \leq d, \text{ and, } gf = h \text{ on } E.$$

Corollary:

$$\operatorname{Al}_{E}(f) \leq \min\left\{d; \operatorname{rank}(M_{d,E}) > \frac{|E|}{2}\right\}.$$

Algebraic immunity over $E_{N,k}$

In particular, consider the set $E_{N,k} := \{x \mid w_H(x) = k\},\$

Theorem:

$$\operatorname{rank}(M_{d,E_{N,k}}) = \binom{N}{\min(d,k,N-k)}.$$

Algebraic immunity over $E_{N,k}$

In particular, consider the set $E_{N,k} := \{x \mid w_H(x) = k\},\$

Theorem:

$$\operatorname{rank}(M_{d,E_{N,k}}) = \binom{N}{\min(d,k,N-k)}.$$

Corollary: For all
$$0 \le k \le N/2$$
:
Al_{*E*_{*N*,*k*}(*f*) $\le \min \left\{ d; 2\binom{N}{d} > \binom{N}{k} \right\}$.}

Remark: It proves that best $AI_{E_{N,k}}$ is lower than in the general case.

Algebraic immunity over $E_{N,k}$

In particular, consider the set $E_{N,k} := \{x \mid w_H(x) = k\},\$

Theorem:

$$\operatorname{rank}(M_{d,E_{N,k}}) = \binom{N}{\min(d,k,N-k)}.$$

Corollary: For all
$$0 \le k \le N/2$$
:
Al_{*E*_{*N*,*k*}(*f*) $\le \min \left\{ d; 2\binom{N}{d} > \binom{N}{k} \right\}$.}

Remark: It proves that best $AI_{E_{N,k}}$ is lower than in the general case.

Theorem:

Let *F* be the direct sum of *f* and *g* of *n* and *m* variables; if $n \le k \le m$ then:

$$Al_{E_{N,k}}(F) \geq Al(f) - \deg(g).$$

Non-linearity over E

Let $E \subseteq \mathbb{F}_2^n$ and f be any Boolean function defined over E, we define: NL_E(f) = min_g{ $d_H(f, g)$ over E}, where g is an affine function over \mathbb{F}_2^N .

$$\mathsf{NL}_E(f) = \frac{|E|}{2} - \frac{1}{2} \max_{a \in \mathbb{F}_2^N} \left(\left| \sum_{x \in E} (-1)^{f(x) + a \cdot x} \right| \right)$$

Non-linearity over E

Let $E \subseteq \mathbb{F}_2^n$ and f be any Boolean function defined over E, we define: NL_E(f) = min_g{ $d_H(f, g)$ over E}, where g is an affine function over \mathbb{F}_2^N .

$$\mathsf{NL}_{E}(f) = \frac{|E|}{2} - \frac{1}{2} \max_{a \in \mathbb{F}_{2}^{N}} \left(\left| \sum_{x \in E} (-1)^{f(x) + a \cdot x} \right| \right)$$

Looking for an upper bound, using the covering radius bound: **Proposition:**

For every subset *E* of \mathbb{F}_2^N and every Boolean function *f* defined over *E*, we have:

$$\mathsf{NL}_E(f) \leq \frac{|E|}{2} - \frac{\sqrt{|E|}}{2}.$$

Restricted non-linearity

Looking for an upper bound, using the covering radius bound: **Proposition:**

For every subset *E* of \mathbb{F}_2^N and every Boolean function *f* defined over *E*, we have:

$$\mathsf{NL}_E(f) \leq rac{|E|}{2} - rac{\sqrt{|E|}}{2}.$$

Proposition: Let \mathcal{F} be a vector space, assuming that:

 $\exists v \in \mathbb{F}_2^N \text{ such that } v \cdot (x + y) = 1 \text{ for all } (x, y) \in E^2 \text{ such that } 0 \neq x + y \in \mathcal{F}^{\perp},$

we have:

$$\mathsf{NL}_E(f) \leq \frac{|E|}{2} - \frac{\sqrt{|E+\lambda|}}{2},$$

where

$$\lambda = \big| \sum_{\substack{(x,y) \in E^2 \\ 0 \neq x+y \in \mathcal{F}^{\perp}}} (-1)^{f(x)+f(y)} \big|.$$

Restricted non-linearity

Proposition: Let \mathcal{F} be a vector space, assuming that:

 $\exists v \in \mathbb{F}_2^N \text{ such that } v \cdot (x + y) = 1 \text{ for all } (x, y) \in E^2 \text{ such that } 0 \neq x + y \in \mathcal{F}^{\perp},$

we have:

$$\mathsf{NL}_E(f) \leq \frac{|E|}{2} - \frac{\sqrt{|E+\lambda|}}{2},$$

where

$$\lambda = \big| \sum_{\substack{(x,y) \in E^2 \\ 0 \neq x + y \in \mathcal{F}^{\perp}}} (-1)^{f(x) + f(y)} \big|.$$

Focusing on N - 1 dimentional vector spaces, **Corollary:**

$$\lambda = \max_{a \in \mathbb{F}_{2}^{N}; a \neq 0} |\sum_{(x,y) \in E^{2} \atop x+y=a} (-1)^{f(x)+f(y)}| = \max_{a \in \mathbb{F}_{2}^{N}; a \neq 0} |\sum_{x \in E \cap (a+E)} (-1)^{D_{a}f(x)}|.$$

In particular, considering the set $E_{N,k}$,

Proposition: For $(N, k) \neq (50, 3)$ nor (50, 47) the bound:

$$\mathsf{NL}_{E_{N,k}}(f) \leq rac{\binom{n}{k}}{2} - rac{1}{2}\sqrt{\binom{n}{k}},$$

cannot be tight.

In particular, considering the set $E_{N,k}$,

Proposition: For $(N, k) \neq (50, 3)$ nor (50, 47) the bound:

$$\mathsf{NL}_{E_{N,k}}(f) \leq rac{\binom{n}{k}}{2} - rac{1}{2}\sqrt{\binom{n}{k}},$$

cannot be tight.

This bound has been improved in [Mesnager17] using power sum of Walsh transform.

In particular, considering the set $E_{N,k}$,

Proposition: For $(N, k) \neq (50, 3)$ nor (50, 47) the bound:

$$\mathsf{NL}_{E_{N,k}}(f) \leq rac{\binom{n}{k}}{2} - rac{1}{2}\sqrt{\binom{n}{k}},$$

cannot be tight.

This bound has been improved in [Mesnager17] using power sum of Walsh transform.

Remark: $\max(NL_{E_N,k}) \ge d/2$,

where *d* is the minimal distance of a punctured 1st order Reed Müller code, which value has been proved in [Dumer,Kapralova13].

In particular, considering the set $E_{N,k}$,

Proposition: For $(N, k) \neq (50, 3)$ nor (50, 47) the bound:

$$\mathsf{NL}_{E_{N,k}}(f) \leq rac{\binom{n}{k}}{2} - rac{1}{2}\sqrt{\binom{n}{k}},$$

cannot be tight.

This bound has been improved in [Mesnager17] using power sum of Walsh transform.

Remark: $\max(NL_{E_N,k}) \geq d/2$,

where *d* is the minimal distance of a punctured 1st order Reed Müller code, which value has been proved in [Dumer,Kapralova13].

Standard non-linearity can collapse:

Proposition:

For every even $N \ge 4$, the quadratic bent functions satisfying $NL_{E_{N,k}}(f) = 0$ for every k are those functions of the form $f(x) = \sigma_1(x)\ell(x) + \sigma_2(x)$ where $\ell(1, \ldots, 1) = 0$.

Balancedness over E

 $f: E \to \mathbb{F}_2$ is balanced over E if its output are uniformly distributed over $\{0, 1\}$.

Balancedness over E

 $f: E \to \mathbb{F}_2$ is balanced over E if its output are uniformly distributed over $\{0, 1\}$.

We could be interested by the behaviour on a family of sets:

Weightwise Perfectly Balanced Function

Boolean function *f* defined over \mathbb{F}_2^N , is weightwise perfectly balanced (WPB):

$$\forall k \in [1, N-1], w_{\mathsf{H}}(f)_{k} = \frac{\binom{N}{k}}{2}, \text{ and, } f(0, \dots, 0) = 0; \quad f(1, \dots, 1) = 1.$$

Balancedness over E

 $f: E \to \mathbb{F}_2$ is balanced over E if its output are uniformly distributed over $\{0, 1\}$.

We could be interested by the behaviour on a family of sets:

Weightwise Perfectly Balanced Function

Boolean function *f* defined over \mathbb{F}_2^N , is *weightwise perfectly balanced* (*WPB*):

$$\forall k \in [1, N-1], w_{\mathsf{H}}(f)_{k} = \frac{\binom{N}{k}}{2}, \text{ and, } f(0, \dots, 0) = 0; \quad f(1, \dots, 1) = 1.$$

Theorem:

Let g' be an arbitrary *N*-variable function, if f, f', and g, are 3 *N*-variable *WPB* functions then,

$$h(x, y) = f(x) + \prod_{i=1}^{N} x_i + g(y) + (f(x) + f'(x))g'(y),$$

is a 2*N*-variable *WPB* function.

Weightwise Almost Perfectly Balanced Function

f defined over \mathbb{F}_2^N , is weightwise almost perfectly balanced (WAPB):

$$\forall k \in [1, N-1], w_{\mathsf{H}}(f)_{k} = \frac{\binom{N}{k}}{2} or \frac{\binom{N}{k} \pm 1}{2}, \text{ and, } f(0, \dots, 0) = 0; \quad f(1, \dots, 1) = 1.$$

Weightwise Almost Perfectly Balanced Function

f defined over \mathbb{F}_2^N , is weightwise almost perfectly balanced (WAPB):

$$\forall k \in [1, N-1], w_{\mathsf{H}}(f)_{k} = \frac{\binom{N}{k}}{2} or \frac{\binom{N}{k} \pm 1}{2}, \text{ and, } f(0, \dots, 0) = 0; \quad f(1, \dots, 1) = 1.$$

Proposition: The function f_N in $N \ge 2$ variables defined as:

$$f_N = \begin{cases} x_1 & \text{if } N = 2, \\ f_{N-1} & \text{if } N \text{ odd}, \\ f_{N-1} + x_{N-2} + \prod_{i=1}^{2^{d-1}} x_{N-i} & \text{if } N = 2^d; d > 1, \\ f_{N-1} + x_{N-2} + \prod_{i=1}^{2^d} x_{n-i} & \text{if } N = p \cdot 2^d, p > 1 \text{ odd}, d \ge 1. \end{cases}$$

has the following properties for all $N \ge 2$:

- ▶ f_N is WAPB,
- deg(f_N) = 2^{d-1} ; where $2^d \le N < 2^{d+1}$,
- ► f_N 's ANF contains $N 1 (N \mod 2)$ monomials.

Introduction

- Filter Permutator [MJSC16]
- Standard Cryptanalysis and Low Cost Criteria
- Guess and Determine and Recurrent Criteria
- Fixed Hamming Weight and Restricted Input Criteria [CMR17]
- Conclusion and open problems

Conclusion and Open Problems

Filter Permutator optimal for FHE, bringing new constraints on filtering function:

- higher number of variables with simpler circuit,
- resistant even when some inputs are known,
- robust on particular sets of inputs.

Conclusion and Open Problems

Filter Permutator optimal for FHE, bringing new constraints on filtering function:

- higher number of variables with simpler circuit,
- resistant even when some inputs are known,
- robust on particular sets of inputs.

Still open questions ?

- Low cost functions without direct sums?
- Simplest function providing security?
- Oncrete values of recurrent criteria for all functions?
- ◊ Functions maximizing NL_{E_{N,k}; AI_{E_{N,k}?}}
- Fixed Hamming weight input and cryptanalysis?

◇ · · · **?**

Filter Permutator optimal for FHE, bringing new constraints on filtering function:

- higher number of variables with simpler circuit,
- resistant even when some inputs are known,
- robust on particular sets of inputs.

Still open questions ?

- Low cost functions without direct sums?
- Simplest function providing security?
- Oncrete values of recurrent criteria for all functions?
- \diamond Functions maximizing NL_{*E*_{*N,k*}; AI_{*E*_{*N,k*}?}}
- Fixed Hamming weight input and cryptanalysis?

◊…?

Thanks for your attention!