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Fully Homomorphic Encryption

f,C(X1),'°' 7C(Xn) — C(f(X-|,'°- 7Xn))

C(x1) = -
- = X1+ Xo
El

o -

= X1+ X2

Bottlenecks:
— high cost when high level of error

— high expansion factor
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SE adapted to FHE

H.Eval(S.Dec)

as efficient as possible

Optimize S.Dec circuit: Minimize homomorphic error growth

In practice for time and space constraints:

e ~ 1000 homomorphic additions/multiplications

o total multiplicative depth < 10

Block ciphers:

AES[GHS12,CLT14], SIMONI[LN14], PRINCE[DSES14], LoWMC[ARS+15]
— too many rounds

Stream ciphers:
Trivium, Kreyvium[CCF+15]

— increasing complexity
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Filter Permutator

Joint work with:

Anthony Journault, Frangois-Xavier Standaert and Claude Carlet,

presented at Eurocrypt 2016,

title:

Towards Stream Ciphers for Efficient FHE with Low-Noise
Ciphertexts.

ePrint: 254 (2016).
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Filter Permutator: Homomorphic Evaluation
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asymetric error growth for products

PRNG

k(P (K)) — additions

a4 — multiplicative chains low noise ct

— few monomials
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Filter Permutator: Security

Cryptanalysis Angle:

"good" PRNG + "good" Shuffle ~ random Permutations,
— all security rely on F:

Attacks on Filtering Function Standard Criteria

> Algebraic Algebraic Immunity

» Fast Algebraic Fast Algebraic Immunity
» Correlation Resiliency

» High Order Correlation Non Linearity

> efc

vV vVv.v.Y

Low cost constraints on F:

controled number of additions
multiplicative chains of simple functions
few monomials

small degree

vvyyvyy
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Standard Cryptanalysis and Low Cost Criteria
Algebraic attacks
Correlation attacks (and others)
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(Fast) Algebraic Attack

Algebraic Attack [CMO03]

Let F be the keystream function of a stream cipher
1. find g a low algebraic degree function s.t. gF has low degree,
2. create T equations with monomials of degree < deg(g),
3. linearize the system of T equations in D = %99 () variables,
4. solve the system in O(D*).
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Algebraic Attack [CMO03]
Let F be the keystream function of a stream cipher
1. find g a low algebraic degree function s.t. gF has low degree,
. create T equations with monomials of degree < deg(g),

2
3. linearize the system of T equations in D = %99 () variables,
4. solve the system in O(D*).

Algebraic Immunity

Let F: FY — Ty,
we define:

Al(F) min{ max(deg(g), deg(gF),g #0) }

min{deg(g9),g #0| gF =0or g(F +1) =0}

Attack complexity depends on deg(g) > Al(F).
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(Fast) Algebraic Attack

Algebraic Attack [CMO03]

Let F be the keystream function of a stream cipher
1. find g a low algebraic degree function s.t. gF has low degree,
. create T equations with monomials of degree < deg(g),

deg(g;

2
3. linearize the system of T equations in D = 3"/ (,) variables,
4

solve the system in O(D*)

| A\

Fast Algebraic Attack [C03]

Let F be the keystream function of a stream cipher

» find g and h low algebraic degree functions s.t. gF = h with deg(g) < Al(F)
and possibly deg(h) > deg(g),

» use codes methods to cancel monomials of degree higher than deg(g),
» solve the system with better complexity than Algebraic Attack.
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1. find g a low algebraic degree function s.t. gF has low degree,
2. create T equations with monomials of degree < deg(g),

deg(g ( ,.) variables,

3. linearize the system of T equationsin D=3, 75
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Fast Algebraic Attack [C03]
Let F be the keystream function of a stream cipher

» find g and h low algebraic degree functions s.t. gF = h with deg(g) < Al(F)
and possibly deg(h) > deg(g),

» use codes methods to cancel monomials of degree higher than deg(g),
» solve the system with better complexity than Algebraic Attack.
We define FAI(F) = min{2AI(F), mins<4eg(q)<Ai(F){deg(g) + deg(Fg), 3deg(g)}}.

v
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Good Algebraic Immunity

Property: Al(F) < [N/2].

Majority function

, 0 ifH <N
X= (X1, -, xn) € FY, MafN(X):{ 1 :)thzle/vr\(/:i)se. ?

Remark:
Al(Majy) = [N/2] but ANF > ((NA/121) monomials.
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Good Algebraic Immunity

Property: Al(F) < [N/2].

Majority function

, 0 if Hw(x) < Y,
X=X, -, xn) €FY,  Majn(x) ={ 1 other\(/vi)se. ?

Remark:
Al(Majy) = [N/2] but ANF > ((NA/121) monomials.

fy in £ variables xy,--- ,x, and f», N — ¢ variables x;.1,--- , xn; direct sum F:

F(xi,- -+ xn) = fi(x1,- -+, Xe) + Bo(Xeqt, - -+, XN)-

Proposition:
max(Al(f), Al(f)) < Al(F) < Al(fi) + Al(f).

15/32



Low Cost and Good Algebraic Immunity

fy in £ variables xy,--- , x, and o, N — ¢ variables x;.1,--- , Xyn; direct sum F:

F(xi,--- xn) = H(x1,- -+, Xe) + B(Xer1, - -+, XN)-

Proposition:
max(Al(f), Al(f)) < Al(F) < Al(f;) + Al(f).

Triangular function

Let T be a Boolean function of N = X&) variables, built as the direct sum of k
monomials of degree from 1 to k.
Example: T4 = X1 + XoX3 + X4X5Xg + X7XgXgX10-

Proposition: Al(Tx) = k
Remark: Minimal number of monomials reachable.
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Low Cost and Good Algebraic Immunity

Triangular function

Let T be a Boolean function of N = X&) variables, built as the direct sum of k
monomials of degree from 1 to k.

Proposition: Al(Tx) = k

Direct sum vector

Let F be a Boolean function obtained by direct sum of monomials (i.e. each
variable appears once and only once in the ANF), we define the direct sum
vector of F as:

mF=[m1)m27"' )mk]y

where mj; is the number of monomials of degree i.
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Low Cost and Good Algebraic Immunity

Triangular function

Let T be a Boolean function of N = X&) variables, built as the direct sum of k
monomials of degree from 1 to k.

Proposition: Al(Tx) = k

Direct sum vector

Let F be a Boolean function obtained by direct sum of monomials (i.e. each
variable appears once and only once in the ANF), we define the direct sum
vector of F as:

mF=[m1)m27"' )mk]y

where mj; is the number of monomials of degree i.

Theorem:

Al(F) = 1r<nd|gk <d+ > m,) .
i>d

15/32



Correlation-like Attacks

Correlation Attack/ BKW-like Attack

Let F be the keystream function of a stream cipher:
1. find g the best linear approximation of F,
2. create the linear system replacing F by g,

3. solve the LPN instance with Bernoulli mean the error made by the
approximation.
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Correlation Attack/ BKW-like Attack
Let F be the keystream function of a stream cipher:
1. find g the best linear approximation of F,
2. create the linear system replacing F by g,
3. solve the LPN instance with Bernoulli mean the error made by the
approximation.

Possible improvements: use of codes techniques or higher order
approximation.

Correlation-like Attacks
[ Correlation Attack/ BKW-like Attack |

| A

Nonlinearity
Let F : FY — F», we define

NL(F) = min {dk(f,9)},

g affine

where dy(f, g) = #{x € FY | F(x) # g(x)} is the Hamming distance.

The approximation error is N;LF).
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Correlation-like Attacks

Nonlinearity

Let F : FY — F», we define

NL(F) = min {dx(f,9)},

g affine

where dy(f, g) = #{x € FY | F(x) # g(x)} is the Hamming distance.

NL(F)

The approximation error is ~5—.

Balancedness

F :FY — T, is balanced if its output are uniformly distributed over {0, 1}.

F :FY — F, is mresilient if any of its restrictions obtained by fixing at most m
of its coordinates is balanced.

16/32



Low Cost and good criteria

Property:
Let F be the direct sum of f; in ny variables and f in n, variables:

> res(f) =res(fy) +res(f) +1,
» NL(F) = 2"NL(f;) + 2" NL(f2) — 2NL(f)NL(%).
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Low Cost and good criteria

Property:

Let F be the direct sum of f; in ny variables and f in n, variables:
> res(f) =res(fy) +res(f) +1,
» NL(F) = 2™NL(f;) + 2" NL(f) — 2NL(f;)NL(f).

Low cost functions

» Resiliency:
Ln=3"1Ly X ; n— 1 resilient
» Nonlinearity:
Q = Dofq Xoi1Xai
» Algebraic Immunity:
kK i
Tk = Zi=1 Hj=1 X@*‘/
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Low Cost and good criteria

Property:
Let F be the direct sum of f; in ny variables and f in n, variables:

> res(f) =res(fy) +res(f) +1,
» NL(F) = 2"NL(f;) + 2" NL(f2) — 2NL(f)NL(%).

Low cost functions

» Resiliency:
Ly=3", X ; n— 1 resilient
» Nonlinearity:
Qg =37 X2i-1Xzi
» Algebraic Immunity:
o
T=2i H}=1 Xii—
» Low cost and optimized criteria:
F=Ln1+Qn72+ZTk

17/32
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Guess and Determine Attacks

’X1 ‘Xz ‘Xs ‘X4 ‘Xs ‘ X6 ‘X7 ‘ X ‘ X9 ‘X10‘X11‘X12‘X13‘X14‘X15‘X16‘X17‘X18‘X19‘X20‘

-1

s
v
2p
2y = Xr(1) + Xz + X3 + Xz
+ X7 (5) X7 (6) + Xa(7)X7(8) + X7 (9) X (10)

+ Xr(11) + Xx(12) X7 (18) + Xr(14) Xz (15) X (16) + X (17) X (18) X7 (19) X (20)
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Guess and Determine Attacks

‘ 0 ’X2‘X3‘X4‘X5‘ 0 ’X7‘X8‘X9 ‘X10‘X11‘X12‘ 0 ’X14‘X15‘X16‘X17‘X18‘X19‘X20‘

+  Xr2) o+ Xx@) o+ Xr@)
+ X (7)Xr(8) + Xr(9)Xr(10)

Guess & Determine attack [Duval,Lallemand,Rotella16]

» Guess ¢ positions being 0,
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2 = X o+ X o+ B+ X
Xa(7)X7(8) + X7 (9) X (10)
+ Xr(11) + Xx(12) X7 (13) + Xz (14 7(16) T Xx(17) Xz 7(20)

+
x
g
x
C)
+

Guess & Determine attack [Duval,Lallemand,Rotella16]
» Guess ¢ positions being 0,
» focus on permutations cancelling the monomials of degree > 2,
» collect all degree 2 equations,
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Guess and Determine Attacks

2 = X o+ X o+ B+ X
Xa(7)X7(8) + X7 (9) X (10)
+ Xr(11) + Xx(12) X7 (13) + Xz (14 7(16) T Xx(17) Xz 7(20)

+
x
g
x
C)
+

Guess & Determine attack [Duval,Lallemand,Rotella16]
Guess ¢ positions being 0,

focus on permutations cancelling the monomials of degree > 2,
collect all degree 2 equations,

linearise and try to solve the system,

time complexity 2¢(1 + N + (}))~, data complexity 1/Pr(P).

v

vV v v v
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G&D attacks and new Boolean criteria

Attack lessons:
» zero cost homomorphic update — unchanged key bits,
» ¢ guesses — F restricted to F’ on N — ¢ variables,
» attack on F’ degree [DLR16],
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G&D attacks and new Boolean criteria

Attack lessons:
» zero cost homomorphic update — unchanged key bits,
» ¢ guesses — F restricted to F’ on N — ¢ variables,
» attack on F’ degree [DLR16],
Al(F") — G&D + (fast) algebraic attacks?
NL(F’),res(F’') — G&D + correlation attacks?
Attack depends on: criteria of F’ and probabilities of getting F'.

Recurrent criteria

For each Boolean criterion, we define its recurrent criterion denoted by [¢] as
the minimal value of this criterion taken over all functions obtained by fixing ¢ of
the N variables of F.

Recurrent Al: Al[¢](F),
FAI[Z](F),
res[{](F),
NL[4](F).

v

v

vV v .vY
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Recurrent Algebraic immunity

Recurrent Al; Al[/](F)
We define Al[¢](F) as the minimal algebraic immunity over all functions
obtained by fixing ¢ of the N variables of F.

Example:
AI[T](F (x1, x2)) = min[AI(F (0, x2)), Al(F (1, X2)), AI(F (1, 0)), Al(F (x1, 1))]

21/32



Recurrent Algebraic immunity

Recurrent Al; Al[¢](F)

We define Al[¢](F) as the minimal algebraic immunity over all functions
obtained by fixing ¢ of the N variables of F.

Proposition: For all Boolean function F and ¢ such that 0 < ¢ < N:

AI(F) — ¢ < Al[](F) < AI(F).

Remark: Both bounds are tight.
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Recurrent Algebraic immunity

Recurrent Al; Al[¢](F)

We define Al[¢](F) as the minimal algebraic immunity over all functions
obtained by fixing ¢ of the N variables of F.

Proposition: For all Boolean function F and ¢ such that 0 < ¢ < N:

Al(F) — ¢ < Al[£)(F) < Al(F).
Remark: Both bounds are tight.

Proposition:
For all strictly positive N and ¢ such that 0 < ¢ < N:

Al[f](Majy) = max <o, {gw - e) .

21/32



Recurrent Criteria and Direct Sums of Monomials

Criteria for Direct Sums of Monomials
Let F be a direct sum of monomials with associated vector [my, - - -, mi], we
define two recurent criteria:

» my: the number of nonzero values of mg,

> Omp = 5 — "= the bias to one half.
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Recurrent Criteria and Direct Sums of Monomials

Criteria for Direct Sums of Monomials

Let F be a direct sum of monomials with associated vector [my, - - -, mi], we
define two recurent criteria:

» my: the number of nonzero values of mg,

> Omp = 5 — "= the bias to one half.

Remark: If Fis a direct sum of monomials, so is F[/].
Proposition: For all direct sum of monomials F:
* * 4
> Mgy > M — {‘mimggk miJ ;

14
> dmpy < Ome2".
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Recurrent Criteria and Direct Sums of Monomials

Criteria for Direct Sums of Monomials
Let F be a direct sum of monomials with associated vector [my, - - -, mi], we
define two recurent criteria:

» my: the number of nonzero values of mg,

> Omp = 5 — "= the bias to one half.

Remark: If Fis a direct sum of monomials, so is F[/].
Proposition: For all direct sum of monomials F:

> My = Mg — LWJ )

> Omey < Smp2°.

Exact expression of mg,; and dmg,, using mr (see [MJSC16]):

Mg, > upper bound on Al[¢](F),
dmpy ¢ €xact value of NL[Z](F).

22/32



Fixed Hamming Weight and Restricted Input Criteria [CMR17]
Restricted input, and algebraic immunity
Restricted input, and non-linearity
Constant weight, and balancedness
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Fixed Hamming Weight and Restricted Input Criteria

Joint work with:

Claude Carlet and Yann Rotella,
title:

Boolean functions with restricted input and their
robustness; application to the FLIP cipher.

ePrint: 97 (2017).
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Filter Permutator: Hamming weight of F input

T m
Uk 21 P{K)
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(P (K))
-
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Filter Permutator: Hamming weight of F input

PRNG

Perm.

—

Gen.

—_—
3

1/);( i P,(K)
Im(y) € FY

Vi, wn(Pi(K)) = wh(K)

(P, (K))
-
Ci
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Filter Permutator: Hamming weight of F input

PRNG

Perm.

e

Gen.

—_—
3

1/);( i P,(K)

Im(v) ¢ FY

Vi, wn(Pi(K)) = wh(K)

F should be studied on

Enk = {x [ wn(x) = k}

R

] ¢
(o]

(Pi (K))
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Filter Permutator: Hamming weight of F input

YK i — Pi(K)
Perm. )
Gen.| T M Im(y) ¢ FY
Vi, wn(Pi(K)) = wh(K)

F should be studied on

Enk = {x | Wn(x) = k}

Py (K))

-_GB — algebraic immunity
— non-linearity
IZI — balancedness
|
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Restricted algebraic immunity

Algebraic immunity over E
Let f be defined over a set E:

Alg(f) min{ max(deg(g), deg(gf), g # 0 over E) }

min{deg(g),g # 0 over E | gf =0 or g(f +1) = 0}
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Restricted algebraic immunity

Algebraic immunity over E
Let f be defined over a set E:
Alg(f) = min{max(deg(g),deg(gf), g # 0 over E) }
= min{deg(g),g #0over E | gf =0or g(f +1) =0}

Let E C FY, d € N, we define the matrix My £:

xeE
1

N
uery — ——— = (7)
wn(u) < d = [T X

El
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Restricted algebraic immunity

Let E C FY, d € N, we define the matrix My g:

xeE
1

d N
veFY . e ——— | 2o ()

wh(u) < d XY= TN, x¥

|E|

Proposition: Let f be defined over E, e € N:
If rank(Mg ) + rank(Me £) > |E|, then there exists g # 0 on E, and h such that:

deg(g) < e,deg(h) < d, and, gf = hon E.
Corollary:

Alg(f) < min {d; rank(Mg g) > “g'} .
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Algebraic immunity over Ey

In particular, consider the set Ey x := {x | wy(X) = K},

Theorem:

N
rank(Mo ) = (min(d kN — k))'
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Theorem:

N
rank(Ma.eu.) = (min(d KN — k))'

Corollary: Forall 0 < k < N/2:
. AN N
Alg, (f) <min<ad; 2 d > K .

Remark: It proves that best Alg, , is lower than in the general case.
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Algebraic immunity over Ey

In particular, consider the set Ey x := {x | wy(X) = K},

Theorem:

N
rank(Ma.eu.) = (min(d, KN — k))'
Corollary: Forall 0 < k < N/2:
. N N
Alg, (f) < min {d; 2<d> > (k) } .
Remark: It proves that best Alg, , is lower than in the general case.

Theorem:
Let F be the direct sum of f and g of n and m variables; if n < k < mthen:

Algy . (F) = Al(f) — deg(9).
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Restricted non-linearity

Non-linearity over E

Let E C FJ and f be any Boolean function defined over E, we define:
NLg(f) = ming{dn(f, g) over E}, where g is an affine function over IFQ’

Z( 1)1‘ +a-x ) )

xeE

|
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Restricted non-linearity

Non-linearity over E

Let E C FJ and f be any Boolean function defined over E, we define:
NLg(f) = ming{dn(f, g) over E}, where g is an affine function over IFQ’

Z(_-I )f(x)+a-x ) )

xeE
Looking for an upper bound, using the covering radius bound:
Proposition:
For every subset E of FY and every Boolean function f defined over E, we

have:
NLe() < (E1 - VEI

|E] 1
NLg(f) = — — = max
ef) =7 2 X

28/32



Restricted non-linearity

Looking for an upper bound, using the covering radius bound:
Proposition:
For every subset E of FY and every Boolean function f defined over E, we

have:
NLe() < (21 VEL

Proposition: Let F be a vector space, assuming that:

Jv e FY suchthat v (x+y)=1forall (x,y) € E2suchthat0 # x + y € F*,

we have:
ML) < [El VIEX]
e(f) ,
2 2
where
f(X)+f
A= | }: ( 1)()+(y)‘
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Restricted non-linearity

Proposition: Let 7 be a vector space, assuming that:

Jv e FY suchthat v- (x + y) = 1 forall (x,y) € E? suchthat 0 # x + y € F*,

we have:
NLg(f) < E _ 7V‘E+/\‘
2 2
where
\ = ‘ Z (_1)f(X)+f(y)|'
(x.y)eE2
0x+yc FL

Focusing on N — 1 dimentional vector spaces,
Corollary:

A= max | Y (=)= max | Y (—1)%0).
ackyia0 |, ceo ki xeEn(arE)
x+y=a

28/32



Non-linearity over Ep

In particular, considering the set Ey x,
Proposition: For (N, k) # (50, 3) nor (50, 47) the bound:

() 1 [(n
NLEN,k(f)S %_é (k)’

cannot be tight.
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In particular, considering the set Ey x,
Proposition: For (N, k) # (50, 3) nor (50, 47) the bound:

G _1 [(n
Ly, ()< 8 - 5/ (7).

cannot be tight.
This bound has been improved in [Mesnager17] using power sum of Walsh

transform.
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Proposition: For (N, k) # (50, 3) nor (50, 47) the bound:

G _1 [(n
Ly, ()< 8 - 5/ (7).

cannot be tight.
This bound has been improved in [Mesnager17] using power sum of Walsh
transform.

Remark: max(NLg,,) > d/2,
where d is the minimal distance of a punctured 1st order Reed Miiller code,
which value has been proved in [Dumer,Kapralovai3].
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Non-linearity over Ep

In particular, considering the set Ey x,
Proposition: For (N, k) # (50, 3) nor (50, 47) the bound:

G 1 /(n
< M
NLENyk(f)f 2 2 k )
cannot be tight.

This bound has been improved in [Mesnager17] using power sum of Walsh
transform.

Remark: max(NLg,,) > d/2,
where d is the minimal distance of a punctured 1st order Reed Miiller code,
which value has been proved in [Dumer,Kapralovai3].

Standard non-linearity can collapse:

Proposition:

For every even N > 4, the quadratic bent functions satisfying NLg,, , (f) = 0 for
every k are those functions of the form f(x) = o4 (x)¢(x) + o2(x) where
((,...,1)=0.
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Balancedness on constant Hamming weight input

Balancedness over E
f: E — T, is balanced over E if its output are uniformly distributed over {0, 1}.
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Balancedness on constant Hamming weight input

Balancedness over E
f: E — T, is balanced over E if its output are uniformly distributed over {0, 1}.

We could be interested by the behaviour on a family of sets:

Weightwise Perfectly Balanced Function
Boolean function f defined over FY, is weightwise perfectly balanced (WPB):

()

?, and,f(O,...,O):O; f(1,71)=1

Vk € [17N_ 1]7WH(f)k =
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Balancedness on constant Hamming weight input

Balancedness over E
f: E — T, is balanced over E if its output are uniformly distributed over {0, 1}.

We could be interested by the behaviour on a family of sets:

Weightwise Perfectly Balanced Function

Boolean function f defined over FY, is weightwise perfectly balanced (WPB):

N
\ﬂ<e[1,N—1],wH(f)k=Q and, /(0,...,0)=0; f(1,...,1)=1.

Theorem:
Let g’ be an arbitrary N-variable function, if f, ', and g, are 3 N-variable WPB
functions then,

hx.y) = f(x +Hx,+g x) + ()9 (),

is a 2N-variable WPB function.
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Balancedness on constant Hamming weight input

Weightwise Almost Perfectly Balanced Function
f defined over FY, is weightwise almost perfectly balanced (WAPB):

N
vk € [1,N — 1], wy(f)x = %or
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Balancedness on constant Hamming weight input

Weightwise Almost Perfectly Balanced Function
f defined over FY, is weightwise almost perfectly balanced (WAPB):

N
Vke[1,N—1],wH(f)k=Qor—, and, f(0,...,0)=0; f(1,...,1)=1.

Proposition: The function fy in N > 2 variables defined as:
Xy if N =2,
fn_1 if N odd,
fn_q + Xn— 2+H,1 XN—i ifN=2d;d>1,
1+ Xn— 2+]_[,1x,,, ifN=p-29p>1o0ddd>1.

fy =

has the following properties for all N > 2:
> fyis WAPB,
» deg(fy) =29-1; where 29 < N < 29+1
» fy’s ANF contains N — 1 — (N mod 2) monomials.
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Conclusion and open problems
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Conclusion and Open Problems

Filter Permutator optimal for FHE,
bringing new constraints on filtering function:

© higher number of variables with simpler circuit,
¢ resistant even when some inputs are known,
< robust on particular sets of inputs.
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¢ resistant even when some inputs are known,
< robust on particular sets of inputs.

Still open questions ?

¢ Low cost functions without direct sums?

o Simplest function providing security?

© Concrete values of recurrent criteria for all functions?
o Functions maximizing NLg, ; Alg, ,?

o Fixed Hamming weight input and cryptanalysis?

6. ?

32/32



Conclusion and Open Problems

Filter Permutator optimal for FHE,
bringing new constraints on filtering function:

© higher number of variables with simpler circuit,
¢ resistant even when some inputs are known,
< robust on particular sets of inputs.

Still open questions ?

¢ Low cost functions without direct sums?

o Simplest function providing security?

© Concrete values of recurrent criteria for all functions?
o Functions maximizing NLg, ; Alg, ,?

o Fixed Hamming weight input and cryptanalysis?

6. ?

Thanks for your attention!
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